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Visual Servo:  The Basic Problem

• A camera views the scene from an initial pose, yielding the 
current image.

• The desired image corresponds to the scene as viewed 
from the desired camera pose.

• Determine a camera motion to move from initial to desired 
camera pose, using the time-varying image as input.

There are many variations on the problem:
• Eye-in-hand vs. fixed camera
• Which image features to use
• How to specify desired images for specified tasks
• Etc…



An Example

In this example, coordinates of 
image points are the features

Blue points are current features

Red points are desired features

Error vectors are shown in pink
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Robot 
Controller

Image Feature
Extraction

Visual Servo
Controller

𝑠∗

m(t)s(m(t),a)

ξe(t) = s(t) - s*

Basic architecture for Visual Servo Control

At this level of abstraction, it’s remarkably similar to the 
architecture for any garden variety feedback control system.



Robot 
Controller

Image Feature
Extraction

Visual Servo
Controller

𝑠∗

m(t) is a set of image measurements 
(e.g., the image coordinates of 
interest points, or the parameters of 
a set of image segments).

m(t)s(m(t),a)

ξe(t) = s(t) - s*

s(m(t),a) is  a vector of k visual features, 
computed from the image. 

a is a set of parameters that represent 
additional knowledge about the system (e.g., 
coarse camera intrinsic parameters or 3D 
model of objects).

s* contains the desired values of the features.

Error defined by e(t) = s(t) - s*

Velocity to camera = ξ



Visual Servo Control --- The Basic Idea

The aim of vision-based control schemes is to minimize an error e(t) 
which is typically defined by

𝑒 𝑡 = 𝑠 𝑚 𝑡 , 𝑎 − 𝑠∗

• m(t) is a set of image measurements (e.g., the image coordinates of interest 
points, or the parameters of a set of image segments).

• s(m(t),a) is  a vector of k visual features, computed from the image.

• a is a set of parameters that represent additional knowledge about the 
system (e.g., camera intrinsic parameters or 3D object model).

• s* contains the desired values of the features.

Typically, one merely writes: e(t) = s(t) - s*



Some Basic Assumptions

There are numerous considerations when designing a visual 
servo system. For now, we will consider only systems that satisfy 
the following basic assumptions:

• Eye-in-hand systems — the camera is mounted on the end 
effector of a robot and treated as a free-flying object with 
configuration space 𝑄 = SE(3).

• Static (i.e., motionless) targets.

• Purely kinematic systems — we do not consider the dynamics 
of camera motion, but assume that the camera can execute 
accurately the applied velocity control.

• Perspective projection — the imaging geometry can be 
modeled as a pinhole camera.

Some or all of these may be relaxed as we progress to more 
advanced topics.



Designing the Control Law --- The Basic Idea

Given 𝑠,  control design can be quite simple.

A typical approach is to design a velocity controller, which requires the 
relationship between the time variation of s and the camera velocity.

• Let the spatial velocity of the camera be denoted by ξ = (𝑣, 𝜔 )

 𝑣 is the instantaneous linear velocity of the origin of the camera 
frame

 𝜔 is the instantaneous angular velocity of the camera frame

• The relationship between  𝑠 and ξ is given by   𝑠 = 𝐿ξ

𝐿 ∈ ℝ6 𝑥 𝑘 is   named the interaction matrix [Espiau, et al. 1992], or 
the image Jacobian [Hutchinson, Hager & Corke, 1996].

⟹ The key to visual servo --- choosing s and the control law.



Designing the Control Law (cont)

Let’s derive the relationship between  𝑒 and ξ,  i.e., how does the error 
evolve as a function of the camera body velocity?

• Using the previous equations

𝑒(𝑡)= 𝑠 𝑡 − 𝑠∗ and         𝑠 = 𝐿 ξ

we can easily obtain the relationship between the camera velocity 
and the rate of change of the error  𝑒

 𝑒(𝑡) =  𝑠 𝑡 = 𝐿 ξ

assuming that 𝑠∗ is constant.

• The relationship between ξ and  𝑠 is the same as between ξ and  𝑒.

Now our problem is merely to find the control input ξ = 𝑢(𝑡) that 
gives the desired error performance.



An Example

In this example, coordinates of 
image points are the features

Blue points are current features

Red points are desired features

Error vectors are shown in pink



• In many cases, we would like to achieve an exponential decoupled 
decrease of the error, 𝑒 𝑡 = e(t0)exp(−𝜆𝑡)

• This is achieved if the error obeys the ordinary differential equation
 𝑒(𝑡) = −λ𝑒

• Combining  𝑒(𝑡) = −λ𝑒 and  𝑒(𝑡) = 𝐿 ξ we obtain
𝐿ξ = − λ 𝑒

• If we assume velocity control, i.e., 𝑢 𝑡 = ξ, we simply solve the 
above to obtain

𝑢 𝑡 = ξ = −λ 𝐿+𝑒

where  𝐿+ ∈ ℝ𝑘 𝑥 6 is chosen as the Moore-Penrose pseudo-inverse 
of 𝐿

𝐿+ = (𝐿𝑇𝐿)
−1
𝐿𝑇

Designing the Control Law (cont)



Practical Issues

In practice, it is impossible to know exactly the value of 𝐿 or of 𝐿+ , 
since these depend on measured data.

The actual value of 𝐿 is thus an approximation, and the actual control 
law is given as

ξ = − λ  𝐿+ 𝑒

There are several choices for   𝐿+ :

•  𝐿+ =  𝐿+: Compute an estimate  𝐿,  use the pseudo-inverse of the estimate

• Directly estimate  𝐿+

• Let  𝐿+ be approximated by a constant matrix (e.g., 𝐿+ for the goal camera 

configuration)



Context – Visual Servo in the Bigger Picture

• Learning, planning, perception and action are often tightly coupled 
activities.

• Visual servo control is the coupling of perception and action 

— hand-eye coordination.

• Basic visual servo controllers can serve as primitives for planning 
algorithms.

• Switching between control laws is equivalent to executing a plan.

• There are a number of analogies between human hand-eye 
coordination and visual servo control.

A rigorous understanding of the performance of visual servo control 
systems provides a foundation for sensor-based robotics.



Visual Servo Control --- Some History
Visual servo control is merely the use of computer vision data to 
control motion of a robot

The first real-time visual servo systems were 
reported in

 Agin, 1979
 Weiss et al., 1984, 1987
 Feddema et al., 1989

In some sense, Shakey [SRI, 1966-1972 or so] 
was an example of visual servo system, but 
with a very, very slow servo rate

In each of these, simple image features (e.g., centroids of binary 
objects) were used, primarily due to limitations in computation power.



Overview

This talk will focus on the control and performance issues, 
leaving aside the computer vision issues (e.g., feature 
tracking).

The main issues --- how to choose 𝑠(𝑡) and the corresponding 
control law:

– Using 3D reconstruction to define 𝑠(𝑡)

– Using image data to directly define 𝑠 𝑡

– Partitioning degrees of freedom

– Switching between controllers



Position-Based Visual Servo Control



Position-Based Visual Servo Control

• Computer vision data are used to compute the pose of the camera (𝑑 and 𝑅) 
relative to the world frame

• The error 𝑒 𝑡 is defined in the pose space 𝑑 ∈ ℝ3, 𝑅 ∈ 𝑆𝑂 3 .

• The control signal ξ = (𝑣, 𝜔) is a camera body velocity.

• The camera velocity ξ is specified w.r.t. the camera frame.

If the goal pose is given by   𝑑 = 0, 𝑅 = 𝐼, the role of the computer 
vision system is to provide, in real time, a measurement of pose error. 



PBVS (cont.)

If 𝑢𝜃 is the axis/angle parameterization of 𝑅, the error is given by

𝑒(𝑡) = 
𝑑
𝑢𝜃

and its derivative is given by

 𝑒 =
𝑅 0
0 𝐿𝜔(𝑢𝜃)

ξ = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ

in which [Malis 98]

𝐿𝜔(𝑢𝜃) = 𝐼 −
𝜃

2
𝑢× + 1 – sinc 𝜃/sinc2

𝜃

2
𝑢×



PBVS (cont.)

Since  𝐿𝜔 is nonsingular when 𝜃 ≠ 2𝑘𝜋, [Malis, Chaumette, Boudet 99], 
to achieve the error dynamics  𝑒 = -λ𝑒 we can use

−λ𝑒 =  𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ =  −λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

The motivation: The solution of the differential equation     𝑒 = −λ𝑒 is a 
decaying exponential.

That’s nice --- but how do we know that it really works? After all, 𝑒(𝑡) is 
a vector, and 𝐿, is not a constant matrix...

This isn’t really a nice, scalar, first-order linear differential equation.



Lyapunov Theory

Lyapunov theory provides a powerful tool for analyzing the stability of 
nonlinear systems.

• Consider a nonlinear system on ℝ𝑛

 𝑥 = 𝑓(𝑥)

where 𝑓(𝑥) is a vector field on ℝ𝑛, and suppose that f(0) = 0.

• The origin in ℝ𝑛 is said to be an equilibrium point for the system.

What does this have to do with our visual servo problem?!?!

• If we use a control law 𝑢 𝑡 = ξ = −λ 𝐿+𝑒 and if  𝑒 = 𝐿ξ, 

• then 𝑒 𝑡 = 0 is an equilibrium point for our visual servo system, 
since

e = 0 → −λ 𝐿+𝑒 = ξ = 0 → 𝐿ξ =  𝑒 = 0

When the error is zero, the control input is zero, thus  𝑒 is zero.



Lyapunov Theory

Lyapunov theory provides a powerful tool for analyzing the stability of 
nonlinear systems.

• Consider a nonlinear system on ℝ𝑛

 𝑥 = 𝑓(𝑥)

where 𝑓(𝑥) is a vector field on ℝ𝑛, and suppose that f(0) = 0.

• The origin in ℝ𝑛 is said to be an equilibrium point for the system.

Lyapunov Functions:

• Let 𝓛(𝑥): ℝ𝑛 → ℝ be a function with continuous first partial 
derivatives in a neighborhood of the origin.

• Let 𝓛 be positive definite:  𝓛(0) = 0,  𝓛(𝑥) > 0 for all 𝑥 ≠ 0.

• 𝓛 is called a Lyapunov function candidate for the system.



Lyapunov Theory (cont)

THEOREM: The origin is a stable equilibrium for the system if 
there exists a Lyapunov function candidate 𝓛 such that  𝓛 is 
negative semi-definite along solution trajectories for the 
system, i.e., 

 𝓛 =
𝜕𝓛

𝜕𝑥
 𝑥 =

𝜕𝓛

𝜕𝑥
𝑓 𝑥 ≤ 0

THEOREM: The origin is asymptotically stable if there exists a 

Lyapunov function candidate 𝓛 such that  𝓛 is negative 
definite along solution trajectories for the system

 𝓛 = 
𝜕𝓛

𝜕𝑥
𝑓 𝑥 < 0



Lyapunov Theory and Visual Servo Control

The two versions of stability provide different sorts of 
performance guarantees:

• Stability guarantees that the system will remain within a 
neighborhood of the equilibrium point, provided the initial state 
is sufficiently close to the equilibrium point.

• Asymptotic stability guarantees that the system will converge to 
the equilibrium point, provided the initial state is sufficiently 
close to the equilibrium point.

In some cases, the system error is the simplest Lyapunov function 
candidate --- this is the case for many visual servo systems.

𝓛 = 
1

2
𝑒(𝑡) 2 →  𝓛 = 𝑒𝑇 𝑡  𝑒(𝑡)



Lyapunov stability of PBVS

Recall our PBVS controller:

−λ𝑒 =  𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ = − λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

Using the Lyapunov function 𝓛 = 
1

2
𝑒(𝑡) 2 we obtain

 𝓛 = 𝑒𝑇 𝑡  𝑒(𝑡)

= 𝑒𝑇 𝑡 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ



Lyapunov stability of PBVS

Recall our PBVS controller:

−λ𝑒 =  𝑒 = 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ → ξ = − λ 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

Using the Lyapunov function 𝓛 = 
1

2
𝑒(𝑡) 2 we obtain

 𝓛 = 𝑒𝑇 𝑡  𝑒(𝑡)

= 𝑒𝑇 𝑡 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)ξ

= - λ 𝑒𝑇𝐿𝑝𝑏𝑣𝑠(𝑢𝜃) 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

= - λ 𝑒(𝑡) 2

and we have, not surprisingly, asymptotic stability.



PBVS Example



Why not just use PBVS?

• Feedback is computed using estimated quantities that are a function 
of the system calibration parameters. Thus,

 𝓛 = - λ 𝑒𝑇𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)  𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

𝑒

and we need 𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)  𝐿𝑝𝑏𝑣𝑠(𝑢𝜃)
−1

to be positive definite.

• Even small errors computing the orientation of the cameras can lead 
to reconstruction errors that significantly impact system accuracy.

• Position-based control requires an accurate model of the target --- a 
form of calibration.

• In task space, the robot will move a minimal distance, but in the 
image, features may move a non-minimal distance during execution.

Features may leave the field of view.



PBVS Task Example
Large translation and rotation about all axes



Image-Based Visual Servo Control



Image-Based Visual Servo Control

For Image-Based Visual Servo (IBVS)

• Features 𝑠(𝑡) are extracted from computer vision data.

• Camera pose is not explicitly computed.

• The error is defined in the image feature space: 𝑒 𝑡 = 𝑠 𝑡 – 𝑠∗

• The control signal, ξ = (𝑣, 𝜔 )  is again a camera body velocity 
specified w.r.t. the camera frame, but for IBVS it is computed directly 
using 𝑠 𝑡 .

For example, if the feature is a single image point with image plane 
coordinates 𝑥 and 𝑦, we have 𝑠(𝑡) = (𝑥(𝑡), 𝑦(𝑡))

Since  𝑒 𝑡 =  𝑠(𝑡), we’ll need to know the relationship between  𝑠 and ξ
to design a controller that achieves the error dynamics   𝑒 = −𝜆𝑒.



Imaging Geometry

Consider a point P with coordinates (X,Y,Z) w.r.t. the camera frame.

Using perspective projection, P’s image plane coordinates are given by

𝑥 = λ
𝑋

𝑍
𝑦 = λ

𝑌

𝑍

in which λ is the camera focal length.

𝑃 = (𝑋, 𝑌, 𝑍)

x
y

z

Optical axis

𝑠 = (𝑥, 𝑦)

Focal length λ

Camera frame



The Interaction Matrix (for a point feature)

As an example, consider the interaction matrix for a single point, with 
coordinates (X,Y,Z).

To determine the interaction matrix for the point:

1. Compute the time derivatives for 𝑥, 𝑦

2. Express these time derivatives in terms of 𝑥, 𝑦,  𝑋,  𝑌,  𝑍 and 𝑍

3. Find expressions for  𝑋,  𝑌,  𝑍 in terms of ξ and 𝑋, 𝑌, 𝑍

(i.e., eliminate 𝑋, 𝑌)

4. Combine equations and grind through the algebra



The Interaction Matrix (for a point feature)

Step 1: Compute the time derivatives for 𝑥, 𝑦

Recall 𝑥 = λ
𝑋

𝑍
and 𝑦 = λ

𝑌

𝑍

Using the quotient rule

 𝑥 = λ
𝑍  𝑋 −𝑋  𝑍

𝑍2
and        𝑦 = λ

𝑍  𝑌 −𝑌  𝑍

𝑍2



The Interaction Matrix (for a point feature)

Step 2: Express time derivatives in terms of 𝑥, 𝑦,  𝑋,  𝑌,  𝑍, 𝑍

• The perspective projection equations can be rewritten to 
give expressions for 𝑋 and 𝑌 as

𝑋 =
𝑥𝑍

λ
and 𝑌 =

𝑦𝑍

λ

• Substitute these into the equations for  𝑥  𝑦 to obtain

 𝑥 = λ
 𝑋

𝑍
−

𝑥  𝑍

𝑍
and     𝑦 = λ

 𝑌

𝑍
−

𝑦  𝑍

𝑍



The Interaction Matrix (for a point feature)

Step 3: Find expressions for  𝑋,  𝑌,  𝑍 in terms of ξ and 𝑋, 𝑌, 𝑍

The velocity of (the fixed point) P relative to the camera frame is 
given by:

 𝑃 = − 𝜔 × 𝑃 − 𝑣

which gives equations for each of  𝑋,  𝑌and  𝑍.
Expanding    𝑃 = − 𝜔 × 𝑃 − 𝑣 we obtain

 𝑋 = -𝑣𝑥 −𝜔𝑦𝑍 + 𝜔𝑧𝑌
 𝑌 = -𝑣𝑦 −𝜔𝑧𝑋 + 𝜔𝑥Z
 𝑍 = -𝑣𝑧 −𝜔𝑥𝑌 + 𝜔𝑦X

Now it’s just algebra…



The Interaction Matrix (for a point feature)

Step 4: Combine equations and grind through the algebra

Combining equations, we obtain

 𝑥 = −
λ

𝑍
𝑣𝑥 + 

𝑥

𝑍
𝑣𝑧 +

𝑥𝑦

λ
𝜔𝑥 −

(λ2+𝑥2)

λ
𝜔𝑦 + 𝑦𝜔𝑧

 𝑦 = −
λ

𝑍
𝑣𝑦 + 

𝑦

𝑍
𝑣𝑧 +

(λ2+𝑦2)

λ
𝜔𝑥 −

𝑥𝑦

λ
𝜔𝑦 −𝑥𝜔𝑧

These equations can be written nicely in matrix form.



The Interaction Matrix (for a point feature)

In matrix form, we obtain:

 𝑥
 𝑦

=
−

λ

𝑍

0

0

−
λ

𝑍

𝑥

𝑍

𝑦

𝑍

𝑥𝑦

λ

λ2+𝑦2

λ

−
λ2+𝑥2

λ

−
𝑥𝑦

λ

𝑦

−𝑥
ξ



The Interaction Matrix (for a point feature)

In matrix form, we obtain:

 𝑥
 𝑦

=
−

λ

𝑍

0

0

−
λ

𝑍

𝑥

𝑍

𝑦

𝑍

𝑥𝑦

λ

λ2+𝑦2

λ

−
λ2+𝑥2

λ

−
𝑥𝑦

λ

𝑦

−𝑥
ξ

This can be written more compactly as
 𝑠 = 𝐿 𝑠, 𝑧 𝜉

The matrix 𝐿 is known as the interaction matrix [Espiau, et al., 1992] or 
the image Jacobian.

Weiss et al. [1987] used  feature sensitivity matrix, while Feddema et al., 
[1989] merely used Jacobian to describe this matrix.



The Null Space of the Interaction Matrix

The null space of this interaction matrix is spanned by:

𝑥
𝑦
λ
0
0
0

0
0
0
𝑥
𝑦
λ

𝑥𝑦𝑍

−(𝑥2 + λ 2)𝑍
λ 𝑦𝑍

−λ 2

0
𝑥λ

λ 𝑥2 + 𝑦2 + λ 2 𝑍

0

−𝑥 𝑥2 + 𝑦2 + λ 2 𝑍

𝑥𝑦λ

− 𝑥2 + λ 2 𝑍

𝑥λ 2



The Null Space of the Interaction Matrix

The null space of this interaction matrix is spanned by:

𝑥
𝑦
λ
0
0
0

0
0
0
𝑥
𝑦
λ

𝑥𝑦𝑍

−(𝑥2 + λ 2)𝑍
λ 𝑦𝑍

−λ 2

0
𝑥λ

λ 𝑥2 + 𝑦2 + λ 2 𝑍

0

−𝑥 𝑥2 + 𝑦2 + λ 2 𝑍

𝑥𝑦λ

− 𝑥2 + λ 2 𝑍

𝑥λ 2

Intuitively, this basis of the null space corresponds to

• Translation along a projection ray

• Rotation about a projection ray

• Translation along the camera y-axis, keeping the camera pointed in the 
correct direction using rotational motions

• Rotation about the camera y-axis, keeping the camera pointed in the 
correct direction using the linear motion

These are the point motions that cannot be “seen” by the camera.



The Interaction Matrix for Multiple Image Points

• Since 𝐿 𝑠, 𝑍 has a nonzero null space, we cannot control all six degrees of 
freedom for the camera motion using a single image point.

• One solution is to simply use multiple image points.

• In this case, we merely stack the interaction matrices to obtain

 𝑠 =
 𝑠1(𝑡)
⋮
 𝑠𝑛(𝑡)

=
𝐿1(𝑠1, 𝑍1)

⋮
𝐿𝑛(𝑠𝑛, 𝑍𝑛)

ξ

• Using this approach, three points provide sufficient information to control 
the camera’s six degrees of freedom.

• It is required to know the depth 𝑍𝑖 for each point (or at least an estimate).



Proportional Image-Based Control
As before, to achieve the error dynamics  𝑒 = −λ𝑒

−λ𝑒 =  𝑒 =  𝑠 = 𝐿 𝑠, 𝑍 ξ

ξ = −λ 𝐿+ 𝑠, 𝑍 𝑒

in which 𝐿+ = (𝐿𝑇𝐿)
−1
𝐿𝑇. 

Using the Lyapunov function 𝓛 =
1

2
𝑒 2 we obtain

 𝓛 = 𝑒𝑇  𝑒
= 𝑒𝑇𝐿ξ
= −λ𝑒𝑇𝐿𝐿+𝑒

We have asymptotic stability when the matrix 𝐿𝐿+ is positive definite.

Unfortunately, this condition is rarely achieved, e.g., when dim 𝑠 > 6.

More on this a bit later…



IBVS Task Example
Large Translation and Rotation About All Axes



Direct Estimation of the Interaction Matrix

• Methods to numerically estimate the interaction matrix rely on observation of a 
variation of the features ∆𝑠 due to a known or measured camera motion Δξ and 
these are related by

𝐿𝑠Δξ = ∆𝑠

which provides 𝑘 equations, while we have 𝑘 × 6 unknowns in 𝐿𝑠.

• Using a set of 𝑁 independent camera motions, with 𝑁 > 6, we can estimate 𝐿𝑠 by 
solving

𝐿𝑠𝐴 = 𝐵

where the columns of 𝐴 ∈ ℝ6×𝑁 and B ∈ ℝ𝑘×𝑁 are formed with the set of camera 
motions and feature variations.

• The least squares solution is, as usual, given by 

 𝐿𝑠 = 𝐵𝐴+



Direct Estimation (cont)

• It is possible to estimate directly the numerical value of 𝐿+, which typically 
provides better behavior.

• The basic relation is, 𝐿+∆𝑠 = Δξ, which provides 6 equations.

• Using a set of 𝑁 independent camera motions, with 𝑁 > 𝑘, we can 
estimate 𝐿+ by solving

 𝐿+ = Δξ 1…Δξ 𝑁 ∆𝑠1…∆𝑠𝑁
+

in which, Δξ
1
…Δξ

𝑁
∈ ℝ6×𝑁 and ∆𝑠1…∆𝑠𝑁

+ ∈ ℝ𝑁×𝑘

• In this case, the 𝑘 columns of   𝐿+ are estimated by solving 𝑘 linear systems, 
while for the previous case (i.e., solving for   𝐿𝑠) the six columns of  𝐿𝑠 are 
estimated by solving six linear systems.



Direct Estimation (cont)

• Optimization methods can also be used to estimate  𝐿𝑠.

• These methods typically discretize the system equation, and use an iterative 
updating scheme to refine the estimate  𝐿𝑠 at each stage.

• One such on-line iterative formulation uses the Broyden update rule:

 𝐿𝑠(t+1) =  𝐿𝑠 𝑡 +
𝛼

Δξ𝑇Δξ
∆𝑠 −  𝐿𝑠 𝑡 Δξ Δξ𝑇

in which 𝛼 defines the update speed.

• The matrix ∆𝑠 −  𝐿𝑠 𝑡 Δξ Δξ𝑇 is of rank one, and such methods are often referred 

to as rank-one update schemes.

• This method updates the estimate  𝐿𝑠 at each iteration.



Direct Estimation (cont)

There are advantages and disadvantages to estimating  𝐿𝑠 using these

methods.

• Using such numerical estimations in the control scheme avoids all the 
modeling and calibration steps.

• These methods are particularly useful when using features whose 
interaction matrix is not available in analytical form. For instance, the main 
eigenvalues of the Principal Component Analysis of an image have been 
considered in a visual servoing scheme.

• The drawbacks of these methods is that no theoretical stability and 
robustness analysis can be made.



Why not use IBVS

Image-based approaches have some nice properties:

• No pose estimation is required, which can save significant 
computation.

• IBVS is remarkably robust to errors in calibration.

• Even though depth estimates are required, these often enter the 
closed-loop dynamics as gains, and thus uncertainties can be dealt 
with by choosing conservative control gains.

BUT… there are some problems:
• There may be singularities in the interaction matrix.
• Some 3D information is still required (e.g., 𝑍), and must be estimated.
• Unpredictable, often suboptimal Cartesian camera trajectories can 

occur.

The last of these can cause fairly serious problems.



A small rotation about the optic axis
Image Motion Feature Error

X,Y,Z Camera Position Components of ξ



IBVS Example
160° rotation about the optical axis



The Chaumette Conundrum

A particularly serious example of this problem was demonstrated by Chaumette
[1998].

When the required motion is a rotation by 𝜋 radians about the optic axis, the camera 
retreats to infinity under traditional IBVS control.

Image-plane feature 
trajectories

Feature error trajectories Cartesian camera translation



Coping with PBVS and IBVS performance problems

It seems that neither PBVS nor IBVS are ideal choices for visual servo 
control.

There are at least two ways to cope with these problems:

• Partition the system’s degrees of freedom, controlling some with 
IBVS, some with PBVS, some with other new methods.

• Partition the system along the time axis, switching between IBVS, 
PBVS (or other) controllers.

We’ll have a look at both of these now…


